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Floods affect crops

15% of flood losses absorbed by the
agricultural sector (FAO 2015)

Asia lost 48 billion USD in agricultural
production from 1980-2013 (60% due to
floods) (FAO 2015)

Insurance can support farmers’
sustainable development Benami et al
2021

<1% insurance penetration in Bangladesh!

Bangladesh: world’s first satellite based
agricultural flood index insurance




Loss in millions
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Insurance requires >15 year
time series to establish
contracts, best satellites for
flood mapping start ~2017

Longest Consistent Time Series: MODIS

MODIS: 500 m resolution, only Optical,
can’t see through clouds, difficult for

floods

Sentinel-1: active imagery (radar, can see
through clouds) at 10 meters resolution

Higher spatial accuracy and temporal
consistency, more correlated to domage

Only consistently available since 2017



Goal: create historical (20+ years) time
series of flooded areas over

Bangladesh for return period estimates

Create a Fusion algorithm (Deep Learning) to
estimate fraction of flooded area for each

MODIS pixel

Sentinel-1 data (2017 - 2021)
to generate weak labels
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Data

Target: Fraction of Flooded Area at
500 meter resolution

- Based on Sentinel-1

- Dynamic thresholding algorithm
creates a binary map at 10 [m]
resolution Thomas ef al., Submitted

- Calculate fraction of inundated
area (e [0,1]) for each MODIS
pixel at 500 [m] resolution

Features:

- 8-Days MODIS Terra composite
image at 500 [m] resolution

- Daily imagery cloud cover is
too dense during Monsoon

- Elevation (FABDEM)

No Sentinel-1
Overpass
for this day

False Color Composite
MODIS Terra
[500m]

Fraction of Flooded Area
From Sentinel-1 Thomas et al. Algorithm



Deep Learning Fusion Model

Long-Short-Term-Memory (LSTM) coupled with
Convolutional Neural Networks (CNNS):

For each day:

- The 10 MODIS images up to the event are run
through a CNN (one network, same
parameters)

- Provides the spatial context

- The 9 previous CNN outputs are run through an

LSTM
- Provides the temporal context

- The LSTM output is combined with the CNN at
time t and run through the last CNN to provide
a prediction

Training and Testing:

- Each Chip is 32x32 pixels at 500 [m]

- The total dataset contains 150’946 chips

- Year 2018 is removed from the dataset for
testing (21’487 chips)
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Fraction of Flooded Modis Pixel

Time Series for all Bangladesh
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Results

Time series shows that the flood peaks and valleys

are well reproduced

Overall R? of .66 for the validation

Per region analysis shows that the model struggles

with more mountainous regions

Observation vs Model
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Fraction of Flooded Area

Inferred time series Link to GIF

. Historical Inference
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Infer time series of fraction of flooded
area based on MODIS Fusion algorithm
(20 years)
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https://www.jgiezendanner.com/Images/Science/NIP/HistoricalTimeSeries.mp4

Return Period Estimates

Return period estimates for
Fractional Flooded Area using
Beta-2 distribution

Tellman et al.,, 2022

Less uncertainty in the Fusion
Model

GFD seems to underestimate flood
extents compared to Fusion model

Reduced uncertainty and more
accurate flood estimate could
reduce base risk
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Conclusions and Outlook

Fusion Algorithm seems to provide an accurate
historical time series for return period estimates

Algorithm needs further work to improve
estimates in mountainous regions

Possibly longer LSTM to capture annual trends

Cross-validation for each year needs to be
implemented

Spatial validation with district hold-outs

Bayesian return period estimation based on
region or district grouping
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