Satellite Fusion Based Historical Inundation Estimates in Bangladesh

Jonathan Giezendanner¹, Rohit Mukherjee¹, Matthew Purri¹, Mitchell Thomas², Max Mauerman², Upmanu Lall³, Arifuzzaman Bhuyan⁴, A.K.M. Saiful Islam⁵, **Beth Tellman¹**

Why Historical Inundation Estimates?

- In Asia: 68 billion in losses in agricultural production, 60% due to floods (FAO 2015)
- Insurance can support farmers' sustainable development (Benami et al 2021)
- Payout based on measurable proxy for losses
- Payout issued when pre-defined threshold is reached
- For Floods: based on Return Period vs Fractional Flooded Area estimates
- Requires accurate historical estimate of yearly maximum flood extent (capture peaks)
- Requires long time series (at least 20 years)

Mapping Floods over 20 Years

- Best Satellites for Flood detection (Radar, Sentinel-1, 10 m resolution) only available recently
- MODIS provides long time-series but only Optical, 500 m resolution

Goal Create historical (20+ years) time series of flooded areas over Bangladesh for return period estimates

- → Reproduce Sentinel-1 observed fraction of flooded area with MODIS data
- → Fusion algorithm

A Fusion Framework to Combine Data Sources Trained Model

Target: Fraction Flooded Area at 500 meter resolution

- Based on Sentinel-1
- Dynamic thresholding binary map at 10 [m] resolution Thomas et al., submitted
- Fraction inundated area (∈ [0,1]) for each MODIS pixel at 500 [m] resolution

Features:

- 8-Days MODIS Terra composite image at 500 [m] resolution
- Elevation (FABDEM)

Overall R² of .66 for the validation

Combine CNNs and LSTM for Spatial and Temporal Context

Long-Short-Term-Memory (LSTM) coupled with Convolutional Neural **Networks (CNNs):**

For each day:

- The 10 MODIS images up to the event are run through a CNN (one network, same parameters)
- → This provides the spatial context
- The 9 previous CNN outputs are run through an LSTM
 - → This provides the temporal context
- The LSTM output is combined with the CNN at time t and run through the last CNN to provide a prediction

Training and Testing:

- Each Chip is 32x32 pixels at 500 [m]
- The total dataset contains 150'946 chips
- Year 2018 is removed from the dataset for testing (21'487 chips)

Inferred Time Series

Future work:

- Per-year cross-validation
- Improve Mountain regions
- Longer LSTM to capture annual trends

Jonathan Giezendanner Postdoctoral Researcher University of Arizona Social [Pixel] Lab https://beth-tellman.github.io

 @JoGiezi **p** jgiezendanner.com **G**ieziJo

