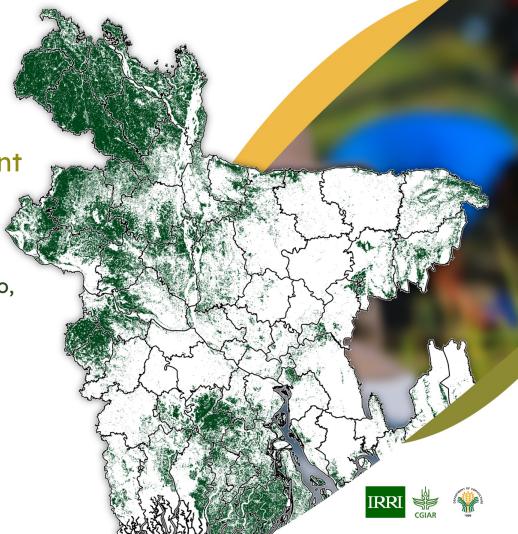


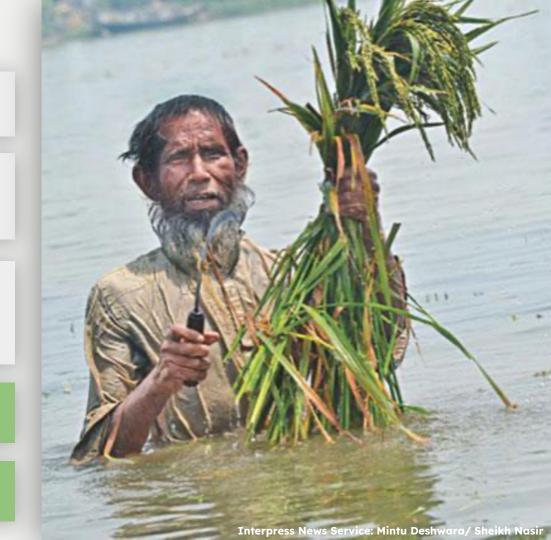
Investigating the impact of introducing submergence-tolerant Aman rice in Bangladesh

Jonathan Giezendanner,


Pavan Kumar Yeggina, Jorrel Khalil Aunario, Aileen Maunahan, Cornelia Garcia, Dewan Abdullah Al Rafi, Valerien Pede, Renaud Mathieu, **Jeffrey Michler**, **Beth Tellman**

jgiezendanner@arizona.edu jgiezendanner.com Twitter: @JoGiezi

Floods affect rice crops


15% of flood losses absorbed by the agricultural sector (FAO 2015)

Asia lost 48 billion USD in agricultural production from 1980-2013 (60% due to floods) (FAO 2015)

Submergence Tolerant Rice Varieties (STRVs), introduced in India in 2011, and in Bangladesh since 2013, can help mitigate flood effects

Can we measure the **effectiveness** of the **Aman** STRV introduced in Bangladesh?

If so, has its introduction been **positive** for **flood damage mitigation**?

Two-way fixed-effects regressions to analyse the effect of the introduction of Aman rice

Enhanced Vegetation Index (EVI): Proxy for rice yield

Floods: Investigate the impact of floods

$$EVI = f (Seed, Flood, ...)$$

Aman Rice Seeds: Cumulative rice seeds distributed in each district

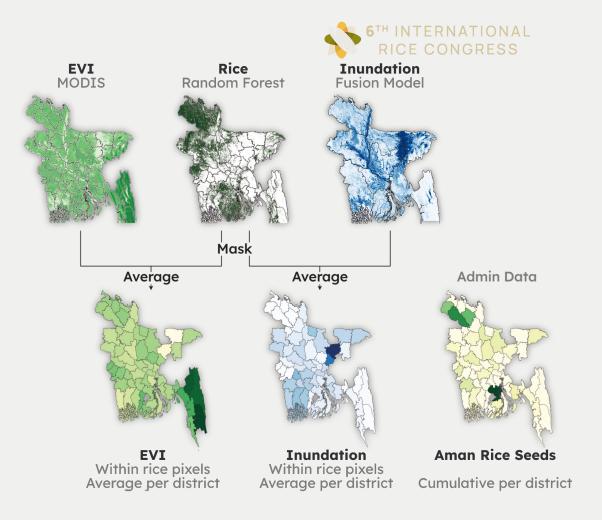
Other effects (rice area, flood duration,...)

Only select pixels where rice is detected

Aggregate data per **district**

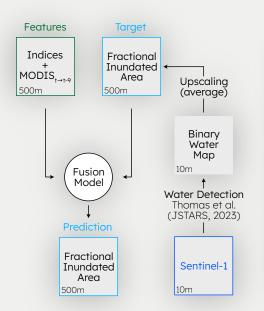
Consider years 2002 to 2021

Data 1 map / year / district

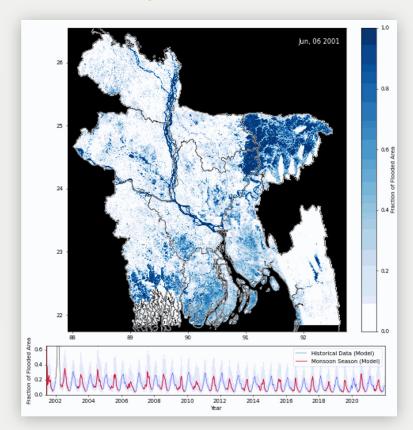

EVI: MODIS median from June to December

Rice Presence: Random Forest Algorithm based on MODIS (details later)

Flood Map: Fractional Inundated Area (Giezendanner et al. 2023)


Aman Rice Seeds:
Administrative data from
government offices in each
district

Inundation Map Details:

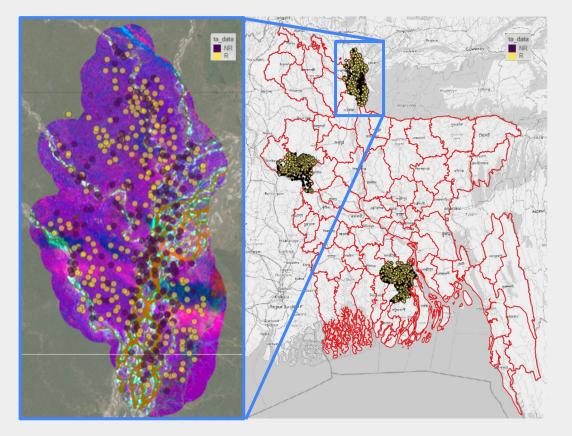

Fusion Model

Fusion Model based on recreating Sentinel-1 observed Fractional Inundated Area with MODIS

Shows fraction of 500 x 500 meters pixel covered by water every 8 days, from 2002 to 2022

Paper, Data and Code

Giezendanner et al (2023) Inferring the past: a combined CNN-LSTM deep learning framework to fuse satellites for historical inundation mapping, CVPR Earthvision Workshop


Rice Map Details: Ground Truth

Baseline Rice/NoRice (RNR) area map derived from MODIS Random Sampling of RNR → 'Ground Truth' RNR 'Ground Truth' interpreted and confirmed using high resolution Google Earth data

Sampled years: 2002, 2004, 2006, 2009, 2015, 2016, 2018 - 2020 Sampled districts: Barisal, Kurigam, Rajshahi

450 total number of samples

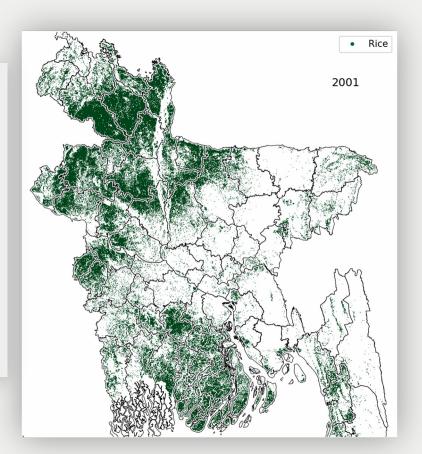
Rice Map Details:

Random Forest generated maps

Data and model processed in Google Earth Engine

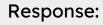
Data:

- MODIS Terra 8-days Composite Median value for the rice grow season (±June to November, may vary depending on the district)
- FABDEM Elevation


Random Forest:

- 70% of data for training, 30% for testing
- .77 accuracy

Inference Run on data form 2002 to 2021



Linear model with multiple group fixed effects

Model EVI, proxy for yield, for district i and year $t[EVI_{i,t}]$

$$EVI_{i,t} = a_i + a_t$$

$$+ b_1 \cdot \ln Seed_{it}$$

$$+ b_2 \cdot Flood_{i,t}$$

$$+ b_3 \cdot (\ln Seed_{i,t} \times Flood_{i,t})$$

$$+ b_4 \cdot Rice_{i,t}$$

+ $e_{i,t}$

Fixed Group Effect:

One intercept per district (i) and one per time step (t) $[\mathbf{a_i}\mathbf{a_t}]$

Explanatory Variables:

Understand effect of **seed**, **flood**, and **combined** effect, and rice area

Clustered Error:

One clustered error term per district / year (i,t) $[\mathbf{e}_{i,t}]$

	Model				
	1	2	3	4	5
Seed	1	1	1	1	1
Flood		**	**	**	**
Seed x Flood				¥	7
Rice				**	**
Adjusted R ²	062	031	002	029	002
Positive / 9 *					

Number of seeds positively influences EVI values

As expected, flood negatively influences EVI values

(Seed x Flood) decreases EVI

As expected, fraction of district covered in rice is positive with EVI

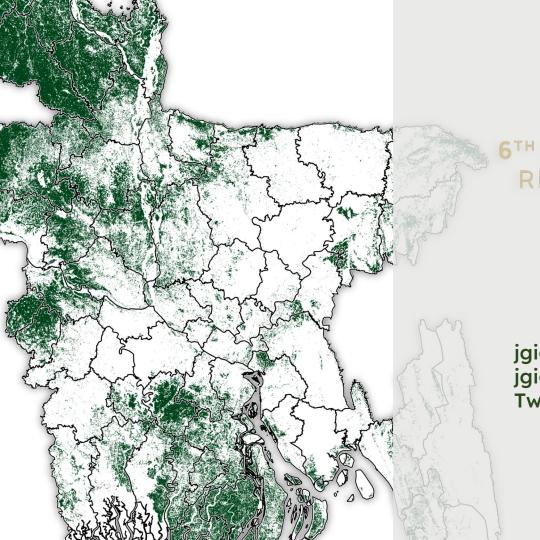
Conclusion

Initial assessment seems to suggest positive impact of introduction of STRV, but not large or significant

Most of the EVI variance is explained by the increase in rice cropped area

Next Steps

Per district analysis and modeling is necessary


Improve Rice maps classification, with MODIS and Landsat (WIP)

Explore additional outcomes of Rice yields

Thank you!

jgiezendanner@arizona.edu jgiezendanner.com Twitter: @JoGiezi

