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timely information tailored to specific locations.
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* Transformer: Utilizes a Vision
Transformer (ViT) to handle
spatial relationships between
weather stations, static ferrain
Transformer  data, and global weather data,
employing self-attention and
cross-attention mechanisms with
positional encodings.

«Static  Terrain Embedding:
Integrates static terrain
iInformation (Land Cover map
and Digital Surface Model) using
a convolutional approach

while the GNN model shows substantial improvement in
wind prediction. Both models show lower errors across the
country, with higher errors in mountainous and isolated
regions.

 Error distribution analysis by terrain type indicates that

both models improve with higher fractions of Tree Cover,
Grassland, Built-up areas, and increased roughness. The
GNN struggles with Shrublands, where the Transformer
performs better.

« Terrain data improves weather forecasts. GNN and

Transformer models outperform interpolation and ERA5
node methods, though they overfit near stations. They
perform well in downscaling and capturing weather trends.

inspired by CvT to capture local
characteristics and improve
weather predictions.

Results

Deep Learning Framework for
Hyperlocal Weather Inference

« Integration of Multiple Data Sources: The framework
combines data from ground weather stations, Earth
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'Yang, Giezendanner et al. (2024): Multi-modal graph neural
networks for localized off-grid weather forecasting
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