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• Hyperlocal weather forecasting addresses the limitations 
of traditional weather models by providing precise and 
timely information tailored to specific locations.

• Applications include agriculture, where farmers can make 
informed decisions, and urban planning, where granular 
weather data improves infrastructure resilience.

• The proposed approach integrates ground-based weather 
observations, satellite imagery, and numerical weather 
prediction data to downscale coarse-resolution weather 
data to high-resolution locations using advanced 
methods like GNN and Transformer models.

Deep Learning Framework for 
Hyperlocal Weather Inference

• Integration of Multiple Data Sources: The framework 
combines data from ground weather stations, Earth 
Observation-derived static terrain data, and a fixed-grid 
global reanalysis weather model (ERA5).

• Model Types: Two types of models are investigated for 
integrating spatial information: Graph Neural Networks 
(GNN) and Transformers.

• Data Utilization: Ground weather stations provide anchor 
points, static terrain data enhances local understanding, 
and ERA5 data captures large-scale weather patterns.

• The Transformer model significantly improves 
Temperature and Dewpoint predictions compared to 
nearest station interpolation and Nearest ERA5 Node, 
while the GNN model shows substantial improvement in 
Wind prediction. Both models show lower errors across the 
country, with higher errors in mountainous and isolated 
regions.

• Error distribution analysis by terrain type indicates that 
both models improve with higher fractions of Tree Cover, 
Grassland, Built-up areas, and increased roughness. The 
GNN struggles with Shrublands, where the Transformer 
performs better.

• Terrain data improves weather forecasts. GNN and 
Transformer models outperform interpolation and ERA5 
node methods, though they overfit near stations. They 
perform well in downscaling and capturing weather trends.

Models
• Graph Neural Network (GNN): 
Constructs a network in three 
parts (main network of weather 
stations, ERA5 nodes, and 
arbitrary locations) using 
Message Passing Neural 
Networks (MPNN) to propagate 
and aggregate information 
through nodes and edges.

• Transformer: Utilizes a Vision 
Transformer (ViT) to handle 
spatial relationships between 
weather stations, static terrain 
data, and global weather data, 
employing self-attention and 
cross-attention mechanisms with 
positional encodings.

• Static Terrain Embedding: 
Integrates static terrain 
information (Land Cover map 
and Digital Surface Model) using 
a convolutional approach 
inspired by CvT to capture local 
characteristics and improve 
weather predictions. Inference
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